Twyman Research Management

Specialist consultants in
scientific project development,
management and presentation



to Twyman Research Management

Twyman Research Management Ltd is a UK company that specializes in scientific project development, management and presentation, including the preparation of research proposals, project management and reporting, project dissemination and complementary activities, and expert assistance with the preparation, editing and revision of scientific manuscripts.

We have been working for more than 20 years to develop and manage research projects and improve the quality of scientific publications.


Services Overview

We offer a range of services relating to the development, management and presentation of scientific projects


Article of the Month

September 2020

Limestone and marble structures are highly vulnerable to weathering, which is caused by a combination of acid rain and pollution, the latter resulting in the formation of unsightly black crust. One promising rejuvenation strategy is the use of microbes that precipitate calcium carbonate, replacing the material lost by corrosion. In September’s article of the month, Andreolli et al. show that bacteria isolated from the black crusts on stone monuments can be enriched by cultivation in medium containing polycyclic aromatic hydrocarbons and used for the consolidation of damaged stone by applying them in a gel layer, which encourages the formation of a natural biofilm. Calcified bacterial cells were shown to fill the pores in the stone and increase the calcium carbonate content by more than 100%. This could facilitate the restoration of damaged stone buildings and monuments without resorting to modern construction materials.

Article details: Andreolli M et al. (2020) Bacteria from black crusts on stone monuments can precipitate CaCO3 allowing the development of a new bio-consolidation protocol for ornamental stone. Intl Biodet Biodeg 153, 105031.

Image is a stone gargoyle on the Neues Rathaus (Marienplatz, Munich, Germany) showing acid rain damage and black crust formation.
Image credit: Nino Barbieri (CC BY-SA 3.0)

August 2020

COVID-19 has placed extreme pressure on healthcare systems around the world, leading to shortages of ventilators, personal protective equipment and intensive care beds. One of the issues facing governments trying to deal with the pandemic is that a permanent state of preparedness would be wasteful, with equipment, personnel and facilities standing idle most of the time. This would be especially challenging for reagents with a limited shelf life, such as testing kits. August's article of the month is a correspondence article in Nature Biotechnology, coauthored by Steven Webb (Global Institute for Food Security), Richard Twyman (TRM Ltd) and Maurice Moloney (AgritecKnowledge LLC). The authors argue that the pandemic response can be addressed by using agricultural technology as an emergency resource. The technology routinely used for crop breeding, seed testing and disease monitoring in agriculture is very similar to that used for medical diagnostics and tracing. With appropriate training, agtech laboratories already accustomed to handling hundreds of samples per day could switch to medical tests in a future pandemic scenario.

Article details: Webb SR, Twyman RM & Moloney M (2020) Agtech infrastructure for pandemic preparedness. Nature Biotechnol 38, 1025–1027.

Image shows a nasopharyngeal swab test.
Image credit: Nature Biotechnology

July 2020

Checkpoint inhibitor therapy is a type of cancer treatment that blocks the ability of tumors to suppress the immune system. If successful, checkpoint inhibitors allow the immune system to produce active T cells that attack and destroy the tumor. However, this approach only works if the tumor expresses checkpoint regulators such as CTLA4, PD-1 or PD-L1. In July's article of the month, Wang & Steinmetz show that the injection of Cowpea mosaic virus into tumors increases the expression of checkpoint regulators and therefore makes checkpoint inhibitor therapy more successful. They prolonged the survival of three mouse cancer models, as well as protecting them against subsequent tumors. In the future, plant viruses could be tested for their ability to stimulate the tumor environment and thus enhance checkpoint inhibitor therapy in humans.

Article details: Wang C & Steinmetz NF (2020) A combination of Cowpea mosaic virus and immune checkpoint therapy synergistically improves therapeutic efficacy in three tumor models. Adv Funct Mater 30 (27) 2002299.

Image shows a cancer drug target trapped in an inactive state by a small-molecule inhibitor
Image credit: NCI/Sriram Subramaniam.